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ABSTRACT

System identification is used in many engineering applications. Most of these identifica-
tion problems can be solved using one of the many time domain methods that have been
studied and well developed in the last 15 years. However, in practice frequency response
data, or Bode plots, may be the only data available to the engineer. Also, in some appli-
cations a time domain model of the system is not necessary. Instead, the engineer wishes
to gain a general knowledge of system response. In these instances a frequency domain
system identification technique may be more appropriate. For this particular project there
was an interest in estimating the coefficients of a Laplace transform transfer function sys-
tem 'model. The transfer function model would aid in the design of machine tool control
systems. Several available parametric frequency domain identification methods were stud-
ied and three computer codes were chosen for further development as representatives of
different approaches to the solution of the problem.
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1.0 INTRODUCTION

System identification is a major part of many engineering problems. The identification
problem involves finding a mathematical model of a system from measured input-output
data [4]. The system model can be either non-parametric, or parametric. Often a non-
parametric model, such as an impulse response or a simple Bode plot of the system re-
sponse, is enough to satisfy the needs of the engineer. In other cases a parametric model,
such as a difference equation or a Laplace transform transfer function, where the coeffi-
cients of the equation are the parameters identified, is necessary.

Historically, non-parametric frequency domain methods dominated practice of system iden-
tification in contol engineering applications up to the 1960’s. In the late sixties, interest in
time domain identification methods began to increase, and time domain techniques have
been studied and developed for the last two decades. Most system identification problems
can be solved using one of the many time domain algorithms available. However, there are
some applications where a frequency domain identification technique is more appropriate.
The purpose of this report is to compare three parametric frequency domain techniques
and discuss their advantages and disadvantages.

One important consideration when deciding on a system identification technique is the
system model and its use. For instance, if the model is to be used to simulate the system,
or used in any state-space control system design procedure, then time domain techniques
are best. However, many engineers are more familiar with frequency response methods
and gain a more intuitive understanding of the system from frequency response plots. If
frequency response control system design methods are used, or if the model is used to gain
general insight into the system, such as resonances in the response, then frequency domain

methods should be considered. :

Another important consideration is the type of data available. Since the development of
the fast and inexpensive Fast Fourier Transform algorithm many data aquisition and anal-
ysis systems immediately transform the data to the frequency domain. In other instances
the only data available is a Bode plot of the system transfer function, or frequency re-
sponse data from a swept sine source, where no time domain data exists. The engineer is
then limited to frequency response data, and frequency domain identification methods are

required.

Here we are interested in identifying poles and zeros of a Laplace transform system trans-
fer function. The transfer function model would then be used to aid in the design of
machine tool control systems. The only data available was the auto- and cross-spectra
of the input (x) and output (y) records of the system, Szz(f) and Szy( fe, measured
wi:;h a (jsnRad 2510 MicroModal Analyzer [9],[11]. The transfer function H(f) was then
calculated by

a(n) - g2 . (1)

Therefore, the goal of the project was to produce a parametric model of a system from the
non-parametric model, H(f). '

A study was made of the available frequency domain identification codes, three of which
were chosen as representative of three different approaches taken in solving the problem.
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These three were further developed or modified to work as a general Laplace transform
. transfer function identifier. The codes studied were Transfer Function (TF), developed at
LLNL by H. McCue, Transfer (TRANSF), developed by H. J. Weaver, also at LLNL [16],
and NAVFIT, originated at Nasa-Ames Research Center by J. Hodgkinson and further de-
veloped by M. Tischler [5]. TF identifies the coefficients of a parametric Laplace transfer
function model by a linear least-squares method. TRANSF identifies the damping, fre-
quency and residues of a summation of complex pole pairs. Finally, NAVFIT identifies the -
coefficients of a parametric Laplace transfer function model using a multivariable search

method.

In this report, each of the methods is described in detail, and the advantages and disad-
vantages of each is discussed. User information is included for each code. In addition,
some general issues involved in frequency domain identification are discussed.



2.0 TRANSFER FUNCTION

The program Transfer Function (TF) fits frequency response data with an equivalent
Laplace transform transfer function model of the system. The system model used is

bmsm+bm_lam-l + -.-,+bo
H(s) = =1 . 2
(s) A" + ap—18" 1 + ..., +ap % (2)

The parameters identified are the coefficients of the transfer function, a;, az,..., @,
by,b1,..., by. The method used to solve for the coefficients is a batch linear least-squares
algorithm. The derivation of the linear equations is covered in detail in the Appendix of

this report.
Weaknesses

The XT X matrix of the solution (see Appendix) is often ill-conditioned, especially if the
frequency range of the data and/or the order of the model is high. This situation occurs
when the columns of the X matrix are nearly linearly dependent. When this happens the
XT X matrix is nearly singular, and since the inverse must be computed, the solution may
be inaccurate. A more numerically stable method of solving this least-squares problem is
the QR decomposition. The QR routines from LINPACK are used in TF. A discussion of
the application of the QR decomposition to the linear least-squares problem is contained
in the LINPACK User’s Guide [14]. The LINPACK routine will automatically improve the
condition of the problem by throwing out columns of the X matrix until a set of linearly
independent columns are obtained. The coefficients corresponding to the columns that
were thrown out are set to 0. Therefore, when any of the high order coefficients have been
set to 0 it is an indication that the problem was too ill-conditioned to solve for a model of

that order.

Another drawback is that this method tends to identify the higher frequency poles first.
Noise in the data often appears to the code as high frequency resonances, so TF will fit
the noise before fitting the actual lower frequency poles and zeros. An example of this
is shown in figure 1. The solid is data generated by a fourth order system, with random
noise added in the frequency domain. The dotted line is the fitting function calculated by
TF, given a numerator order of three and a denominator order of four. It is apparent that
the algorithm tries to identify the noise at the high end of the spectrum before identifying

the actual resonances at the lower end.

This behavior has been observed in time-domain identification codes that use a linear
least-squares solution. One approach often used to overcome this problem is to over-model
the system [13]. By increasing the model order, both the actual system response and the
noise are fitted. figure 2. shows a much imporoved fit of the same data when TF is given
a numerator order of 7 and a denominator order of 8. This approach is discussed further

in section 5 of this report.
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Figure 1. Fourth order system.
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Figure 2. Fourth order system, over-modelled.
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Strengths

This is the simplest solution of the problem. It is a one-step solution that will always
_converge, unlike the non-linear methods that at times may converge on a local minimum, or
may not converge at all. Furthermore, it is a simple programming problem, and generally
requires much less computer time to arrive at a solution than the iterative non-linear
techniques. Finally, TF is robust and easy to use. The model order is the only information
necessary to fit the data. A method used to determine the model order when it is unknown

is discussed in section 5 of this report.

User Information

TF has been incorporated into SIG (a General Purpose Signal Processing Program) and
will be available in SIG as a frequency domain transfer function identifier. For more
information on SIG please see the SIG User’s Manual [12]. The program requires as input
two data files, either the Fourier transforms of the input and output time records, X(w)
and Y (w), or for the stochastic case, the autospectrum of the input, Szz(w), and the
cross-spectrum of the input and output, Szy(w). Also, the user will need to make an
estimate of the numerator order, denominator order, and system type (i.e., number of

poles at the origin).

The output of the program consists of the coefficients of the transfer function, a plot, in
magnitude and phase, of the data overlayed by the fitting function, and the mean squared
error between the data and the fit. The coefficients are saved in a SIG coefficient data
store. The user is then free to do what he/she wishes with the transfer function coefficients.



3.0 TRANSFER

The code Transfer (TRANSF) was originally developed at LLNL for identification of modal
parameters from transfer function data obtained by dynamic structures tstlng The model
used in this code is

- Ag +3B;
H(w) = ZE, prgrg e (3)

or, as a Laplace transform,

n . .
_ A — 3B, Ap + 1B
H(s) = ; [s + o — J2w; ter oy + 527wy | (4)

where

n = the number of complex pole pairs

A and B are the real and imaginary parts of the residue of the kf* pole _
6]

oy is the damping ratio and,

wy is the resonance frequency of pole k.

TRANSF does a linear least-squares fit to a function by a method of linearizing the fitting
function. The cost function of this method is

J= i [(HD("')i - HF(“)i)z] ) (5)

i=1

where

a = |A1 By wy 01, ...,Ap Bp wn 0n] , n = number of poles

Hp(a); = the transfer function data,

Hp(a); = the fitting function, and

N = number of points.
The model, or ﬁttmg function is linearized in the change in the parameters 6a, by a first
order Ta.ylor series expansion. Then éa is lteratlvely solved for by linear least-squa.res until
a chosen minimum value of the cost function is reached. The algorithm is described in

detail in Bevington [3]. For a derivation of the fitting model and information about how
to run the program, see the TRANSF User’s Manual [16).
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Weaknesses

The model used in this program is restrictive. It is an all-pole model, and assumes that
the poles are complex pairs. The code fits only these poles and their residues. In effect
this method fits the partial fraction expansion of the transfer function. By recombining
the parts, the frequency and damping of the zeros can be found. In general though, the
code has difficulty identifying simple poles or zeros that lie along the real axis of a real-
imaginary pole plot (as opposed to complex pairs) or poles and zeros at the origin. In
structural applications, for which this code was developed, this model works satisfactorily.
The data generally consists of series of lightly damped resonances, but this model may not
be appropriate for other types of systems in other applications.

A single real pole can be identified by fixing the frequency parameter at a very small
number (say .0001, setting it to O causes a divide by zero.), then iterating for the residue
and damping parameters. For example, figure 3 shows the TRANSF fit of a first order low
pass filter with a cutoff frequency of 10 Hz. The frequency paramecter was fixed at .001 Hz.
After six iterations the fit is so close that the dotted line is difficult to distinguish from

the actual data.

Averaged Real Fit
1.2+

1.0
0.8
8.6~
8.4
8.2
a-
-2.2 > * 1& 159
Frequency

0.2 fiveraged Imaglnary Fit

-a.2

naginary

0.4

-9.6 L) 2
- 160 150 200
Frequency

T
8

Figure 3. First order low pass filter.



For most data sets a fairly good equivalent transfer function fit can be found (as a combi-
nation of complex poles) but if the actual form of the transfer function is known to have
simple poles or zeros then those parameters cannot be fitted satisfactorily. For example, a
partial fraction expansion of a transfer function that has two simple poles and one simple

zero is

H(s) = —149.22 + j8.02¢ — 6+ 65.69 N 321.39 + j826.8 + 321.39 — j826.8
- s +941.91 s+ 62.81 s+ 314.23 + j6276.75 s+ 314.23 — j6276.7

The best fit produced by TRANSF is shown in figure 4. The fitting function from the
identified coefficients is

56.21 + 733.77 + 56.21 — 733.77 + 321.39 + 7824.88
S +113.19 + 5628.32 s+ 113.19 — j628.32 ' s + 314.31 + j6276.0

H(s) =

321.39 — j824.88
s + 314.31 — j6276.0°

As shown in the plot, TRANSF can find a good equivalent fit. The complex pole pair at
the high end of the spectrum was very accurately identified as can be seen by comparing
the last terms in both the actual function and the identified function. However, instead of
identifying the simple poles and zero of the actual transfer function, TRANSF fitted that

part of the data with an equivalent complex pole pair.

Strengths

The all-pole model used in this method is the model most often used in the frequency
domain identification codes studied. For many applications the zeros are of no real inter-
est. If only the location and damping ratio of the poles are needed, as in the structural
applications, or if the data is a series of lightly damped resonances, a good fit of the trans-
fer function can be obtained. For instance, in the previous example the complex pair of
poles was identified quite accurately. Also, using this method and model, the user has the
option to fit one section of the data at a time. If the data record contains several resonant
peaks over a wide range of frequencies, one can split up the data record into a few sections
and identify one or two peaks at a time. This option can help with numerical problems
sometimes encountered with this code when fitting data over a wide range of frequencies.
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Figure 4. Best fit of fourth-order system by TRANSF.



4.0 NAVFIT

The code NAVF'IT is a general purpose program to fit high order system frequency response
data with a low order transfer function. NAVFIT was originally developed at the Nasa-
Ames Research Center for transfer function identification, to be used in aircraft control

problems. The system model used in this code is a transfer function of the form '

gain (:c;.s" + T .+ z,.) e s (6
(Iu+18m + $n+28m—l + In+38m-2 +...+ zn+m—1) )

H(s) =

The parameters identified are
gain,
Z), Z2, ...y Tn+m+1 ; the coefficients, and

7, the time delay.

NAVFIT uses Rosenbrock’s Multivariable Search Method to identify the parameters of the
transfer function. This method minimizes a cost function by varying the parameters along
a set of orthonormal directions until a minimum is reached. At that point a new set of
directions is computed and the parameters are varied again. The two steps (computation
of directions, and variation of parameters) are repeated until a certain minimum cost is
reached, or until no new set of directions can be found to continue the minimization ( a
local minimum is reached ). For a detailed description of the algorithm see Himmelblau [2].

Weaknesses

This method needs a good set of starting parameters in order to successfully minimize the
cost and arrive at an accurate estimate of the parameters of the transfer function. Without
good starting parameters the algorithm is very likely to reach some local minimum and
never converge to a good fit. For example, to identify the fifth order system shown in
figure 5, NAVFIT was given starting coefficients all equal to 1.0. The final fit (the dotted
line) is not a satsifactory fit of the data.
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Figure 5. Best fit from poor starting values.

It is necessary to know the order of the numerator and denominator, the type of poles and
zeros ( simple, or complex pairs ) and make a good guess at the resonance frequencies of
the poles and zeros. Generally this information can be estimated visually from the Bode
magnitude and phase plots of the transfer function data. Some analysis of the physical
system can also be helpful. For example the form of the transfer function of any motors,
amplifiers, etc. included in the system can help in picking the first guess at model order
and resonant frequencies.
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Figure 6 shows a good fit of the same data when NAVFIT was given good starting param-
eters estimated from the Bode plot.

MAG(DB)
N
u
i

MAGNI TUDE

80
40
2 -

—4a

PHASE (DEG)

~120 4

1 10 100
FREQUENCY

.« 4
- =

PHASE

-160
.a1

FREQUENCY

Figure 6. Best fit from good starting values.

This method does a least-squares fit of the data, so the best fit of very noisy data, or data
with noise that distorts the shape of the actual response will not necessarily be a correct

fit.
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Strengths

This is the most general method of the three codes studied. It fits both poles and zeros
equally well, and allows for a time delay in the system. A knowledge of the expected form
of the system transfer function can be used to your advantage by guiding the program to
identify the poles and zeros you expect to see.

Example Run and User Hints

There is no formal User’s Manual for NAVFIT at this time, so included here is an example
run and detailed user hints. The code is written in FORTRAN and runs on a DEC VAX
11/780 computer. NAVFIT is an interactive program that fits high order response data to
a low order transfer function. It will prompt the user for the information needed to start

a fit.

The program requires as input a file of transfer function data in triplets of frequency (r‘{ s),
real, and imaginary parts of the transfer function data. The user also needs to have a first
guess of the order of the numerator and denominator of the transfer function, and starting
coefficients. The starting coefficients can be entered as coefficients, or poles and zeros in
real-imaginary or damping and frequency format.

The output of the program will be the coefficients of the fitted transfer function, and a
plot of the data overlayed by the fitting function. The poles and zeros of the transfer
function are calculated and output in both real-imaginary and frequency-damping format.
The output information can be printed to the terminal screen and/or saved in a file.

Initially the user must enter the name of the graphics terminal being used, so that the
graphics routines will plot correctly. Then the data may be entered at the terminal or read
from an input file. Data entered at the terminal is entered in triplets of freq(hz), gain(db)
and phase(deg.); one triplet per line.

In this example we use a file containing the high order input response data of the system.
The format of the file must be

line 1: Text, a file identifier of up to 80 characters
lines 2 - end: triplets of Freq(r/s) real imaginary

The numbers are read in FORTRAN free format. The limit on the number of data points
is 1600, but the more data there is the longer it will take to converge on an answer. It is

best use less than 1000 data points if possible.

As an example run, we will use a file called notch.dat, which contains the frequency
response of an actual notch filter, 435 points. The user will be prompted as follows.
Answers are entered on the following line.

14



*** HIGH ORDER INPUT DATA ***
INPUT TYPE:

(1) DATA FROM A FILE

(2) DATA ENTERED AT THE TERMINAL
OPTION NO.?

1
NOTCH.DAT

The input data is plotted (figure 7) and the user has the option to re-read the file if there
is any problem.

INPUT OK [Y/N]?
Y

INPUT MAGNITUDE

FREQUENCY (H2)

INPUT PHARSE
108+

S84

FREQUENCY (HZ)

Figure 7. Notch filter data.



Next the user must enter the starting parameters. The order of the numerator and de-
nominator are entered.

ENTER 1ST GUESSES, L.0.S. NUM,DENOM ORDERS
22

Then an options menu is printed to the screen.
##% LOW ORDER DATA #*+

(1) TO ENTER COEFFICIENTS
(2) TO ENTER ROOTS (ZETA,OMEGA OR REAL,IMAG)
(3) TO ENTER ROOTS (CURSOR PEAKS)

OPTION NO.?

The user is given the option to enter (option 1) the starting coefficients, or (option 2 and 3)
the roots.

In option 2 the qua.dra.t';c roots (complex pairs) can be entered in complex (real-imaginary)
form or as damping and frequency. In option 3 the damping ratio of all poles and zeros
are automatically set to 0.05, and the user picks the resonance frequencies by cursoring

the peaks. For this example.we choose option 2.

OPTION NO.?
2 .

For option 2 the user is prompted for the number of quadratic terms, ie. the number of
pairs of complex poles or zeros, in the numerator and denominator.

NUMBER OF QUADRATIC TERMS IN NUMERATOR, DENOMINATOR?
10

Then the values of the first guess poles and zeros are entered. The user may enter them
in either damping and frequency, or real and imaginary.

ENTER 1 FOR ZETA,OMEGA, 2 FOR REAL,IMAGINARY.
1

ENTER DAMPING AND FREQ. FOR NUMERATOR QUADRATIC NO. 1
0.08 400.0

ENTER (ON ONE LINE) THE SIMPLE DEN. ROOTS
(DONT FORGET THE MINUS SIGN)
-56.0 -1000 .

16



The frequency data is automatically scaled to between 0 and 10 Hz, and the steady state
gain is automatically chosen so that the coefficients are close to the same order of magni-
tude. The search method converges much faster when the parameters are close in magni-
tude. The final set of starting parameters are printed at the screen.

The user is then asked if any of the coefficients are to be fixed, ie. not varied in the
parameter search. This is useful for instance when there is a pole or zero at the origin,
then the last coefficient of the numerator, or of the denominator, can be set at zero.

FIX COEFFICIENTS [Y/N]?
N

If the answer had been Yes the user would be prompted to enter 2 Y or an N (yes or no)
for each coefficents to be fixed.

The time delay is then entered and fixed or freed. Generally it’s a good idea to fix the
time delay at 0 and get a best fit, then if there is a time delay in the system the time delay
can be freed and the user can see a direct comparison of the effect of the delay. There is
no time delay in this system so we will set it to 0.

ENTER TIME DELAY
0

FREE TIME DELAY [Y/N]?
N

The user also has the option to force all the coefficients to be positive (a necessary condition
for a stable system, but not sufficient [15]).

ALLOW NEG. COEFFS. [Y/N]?
N

In the cost function, the value of the magnitude and phase errors are weighted by separate
constants. The defaults are 1.0 for the magnitude and 0.017 for the phase. The user may
change the defaults. For instance, if the phase measurements are questionable, then the
weighting constant for the phase may be lowered and the fit will then depend mainly on

the magnitude.

STANDARD WEIGHTS [Y/N]?
Y

Finally the user specifies the number of iterations to be used for the search. To see the fit
of thestarting coefficients enter 1.

17



ENTER NUMBER OF ITERATIONS (TRY 1000), USE MINUS SIGN ON
THE ITERATIONS TO SKIP INTERMEDIATE SEARCH PRINT OUT

1

After the iteration is done,

COST FUNCTION = 57729.31
EHTER O TO GO ON, NEW ITS FOR MORE ITERATIONS.

o

The starting coefficients and a plot of the data overlayed with the fit will be plotted on
the screen (see figure 8). If the dotted line of the fitting function is near the data and has
approximately the same shape, then the code should have no trouble converging on a good

set of coefficients.

MAGHMI TUBL
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.0a1 .01 . .1 1 10
FREQUENCY(HZ)  _ _ _ _ __
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o
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a
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Figure 8. Starting fit of notch filter.
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The user is then given several options.

Kok ok okokdkokkkokkkkkkkokkkkk NAVFIT OPTIONS okokokoskokdskok ko koo dkokdkok ko ok ok okokodok ok

(1) NEW iNPUT DATA

(2) NEW 1ST GUESSES, LOW ORDER SYSTEM

(3) FIX/FREE COEFFICIENTS,MORE ITERATIONS
(4) DATA OUTPUT

(6) QUIT

OPTION NO.?

If the starting fit looks good, choose (3). The user will be prompted to fix/free coefficients
and give a new number of iterations. As it says in the prompt, 1000 iteration is a good _

number to start with.

If the user wishes to try different starting values, choose (2). The starting orders and -
coefficients can all be entered again.

To begin with a new set of data, choése (1).

When the user is satisfied with the fit, the final fitting function and plots can be output
to the screen and/or a file using option (4).

When finished choose (5) to quit.

During the search, the intermediate values of the cost function, the iteration number, and
the parameters are printed to the screen. The cost function is an absolute measure of the :
sum of the squares of the difference of the magnitude and phase of the data and the fit.
With noise in the data the value of the cost will never reach 0. The code will have reached .

a best possible fit when the message
BASE VECTOR NOT CHANGING WITHIN O.1 PERCENT

is printed at the screen. If the code has reached this point during its iterations, yet the
plotted fit is still way off, it has reached some local minimum of the cost. To get a better
fit, closer starting coefficients will be necessary.
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The final fit of the example notch filter data is show in figure 9. The final transfer function
calculated is -

PAYOFF FUNCTION= .667E+0O1 SIGMA GAIN, PHASE: .409E+00 .304E+01
GAIN(HF)= 0.988226E+00; S.S.= 0.163047E+01; DELAY: 0.000000E+00

NUMERATOR DENOMENATOR
0.852506830E-07 S** 2 0.862664891E-07 Sx* 2
0.27945B6762E-04 S** 1 0.282882061E-02 Sx* 1
0.452428073E+00 S** 0 0.277482808E+00 S** O

~ NUMERATOR DENOMENATOR
REAL IMAG REAL IMAG
1 -0.16390E+03 0.22979E+04 -0.98387E+02 0.00000E+00 -
2 (Z= 0.71147E-01 , W= 0.23037E+04) -0.32693E+05 0.0000QE+00

Sigma gain and sigma phase are the mean squared error of gain and phase fits. Gain(hf)
is the high frequency gain and S.S. is the steady state gain. The Payoff Function is the
value of the cost function for that set of coefficients.

A comparison of the poles and zéros identified by NAVFIT with the actual poles and zeros
calulated from the resistor and capacitor values follows. The error is within the accuracy
of the capacitor and resistor values. The identified values may well be more accurate than
the calculated pole and zero values.

Actual Identified %Error

poles 5061 Hz 5200 H =z 3%
.25Hz 156 Hz 38%

zeros w=360Hz w=366Hz 1%
z = 0.0714 z = 0.0712 0.2%

Code Limitations
NAVFIT is limited to 1600 data points, a numerator order of 25, and a denominator order

of 25. The data points do not have to be equally spaced along the frequency axis, so the
user may edit the data files to delete excess data, or extra noisy points.
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MAGNITUDE

Figure 9. Final fit of notch filter.
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5.0 GENERAL ISSUES

There are several issues that should be considered when choosing and running any param-
eter identification program. Those factors that have an effect on all of the codes considered
in this study include sampling of the data - in time and frequency domain, frequency range
or the system bandwidth, noise, and model order determination. Each one of these issues
and their effects on the various parameter identification codes are discussed next.

Sampled Data

Many data acquisition and analysis systems today take a time record of input and output
data and immediately transform it to frequency domain data using an FFT algorithm. The
only data available to the engineer then is the Fourier transforms of the input and output
data. For this case, the original time data must be sampled correctly according to the
Nyquist criterion [8], so that all of the information within the frequency range of interest
is preserved, without aliasing the signal. Many of these analyzers today will automatically
filter the data and choose the correct sampling rate to meet the Nyquist criterion. The
actual data used in this study was collected with a GENRAD 2510 Micromodal Analyzer,
using ISAP, the signal analysis program included with the machine [11]. When given a
frequency range, number of spectral lines, and a number of averages, the GENRAD will set
the cutoff frequency of a programmable low-pass anti-aliasing filter, and choose a sampling
rate of 2.56 times the highest frequency. This satisfies the Nyquist sampling criterion. It
will then take the number of data records chosen for ensemble averaging, transform them
using a micro-coded FFT algorithm, and average them in the frequency domain. The data
finally stored and used by the GenRad is the auto-spectra of the input and the output, Sxx
and Syy,and the cross-spectrum, Sxy. The transfer function data is calculated by dividing
the cross-spectrum by the input auto-spectrum [9).

For the frequepcy domain data, the choice of sampling rate is not so formalized, but there
are some general rules that can be followed for good results. First, the minimum number
of points for a transfer function fit must equal the number of parameters being estimated.
This guarantees at least one equation for each parameter. Of course, one data point per
parameter will rarely be enough data to describe the curve of a more complicated transfer
function. In addition, noise in the measured data will distort the transfer function. The
goal is to have enough data points to show the general shape of the transfer function, yet
not so many points as to waste the computer’s and the engineer’s time. Some factors to
consider when choosing the number of samples are

1. There must be enough points to show the separation of closely spaced poles. The code
must be able to identify them separately and identify the zero between them.

2. When the data collected is equally spaced along the linear frequency axis, there must
be enough data points at the low end of the frequency spectrum to identify any low
frequency dynamics. For instance, a data file may contain 200 data points between .1
to 1000 Hz. This means there are only 2 data points between .1 and 10 Hz. The best
fit of those points would be a straight line between them, which is not a good fit if there
are any actual resonances under 10 Hz. Either more data points should be measured
in that range, or the frequency range should be decreased.

3. When using the non-linear techniques such as NAVFIT, the problem may be viewed
as a curve fitting problem. Since NAVFIT does not require equally spaced data, one
approach would be to choose many samples around the peaks and valleys of the transfer
function plot, and take out those points that do not give much information about the
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curve by thinning out the number of points along relatively constant areas of the
spectrum.

Frequency Range

Most frequency domain identification algorithms will encounter numerical problems when
the freqeuncy range of the data is too great. For instance, in the linear least-squares
method, TF, a frequency range of .01 to 1000 Hz with slightly noisy data points, will
cause the problem to be too ill-conditioned to obtain an accurate identification of the
coefficients. Frequency scaling can center the frequency data about 1, to minimize the
chance of underflow or overflow computing errors. Also row scaling of the data matrix can
help reduce the range in magnitude of the elements. These scaling techniques have been
added to TF, but still a bandwidth over 4 decades can cause numerical inaccuracies.

Similarly, the non-linear programming methods will have difficulty with wide frequency
ranges. For a fourth order transfer function with widely spaced poles and zeros, the
coefficients of the numerator and denominator can range in size from 1 to 10~2°, The non-
linear algorithms have trouble converging on a set of parameters with such a wide range
of magnitude. Frequency scaling can result in quicker convergence and increased accuracy
of the final fitting parameters in most of the parameter identification codes.

Automatic frequency scaling has been added to codes TF and NAVFIT. By scaling the
frequency data to between 0 and 1, the coefficients of the transfer function will be scaled
to about the same order of magnitude. For example if the transfer function is

H(s) = (2.5¢ — 8)s® + (1.de — 4)s® + (5.Te — 2)s + 3.9
. "~ (4.5¢ — 11)s* + (2.1¢ — 8)s3 + (3.2¢ — 5)s2 + (9.8¢ — 2)s + 6.5

then when scaled by a factor of 1.0e-2 the transfer function coefficients become

H(s) = 2.5(1.0¢ — 2s)3 + 1.4(1.0e — 25)? + 5.7(1.0e — 2s) + 3.9
"~ 4.5¢ + 1(1.0e — 25)* + 2.1(1.0e ~ 2s)3 + 3.2¢ — 1(1.0¢ — 25)2 + 9.8(1.0e — 2s) + 6.5

The minimization algotithms of the non-linear programming methods, such as NAVFIT,
perform well with these new perameters (the new coefficients). After the code converges
on a set of coefficients, the coefficients are scaled back up. Then the rootfinding algorithm

factors out and prints the poles and zeros.

Another approach would be to break up the data record into smaller sections, and identify
one section at a time. The frequencies within a section can then be limited to a workable
range. The code TRANSF has this option included. One point that must be considered
when using this approach is that when the data record is split up, dynamics of the system
that occur outside the frequencies in the small section can still affect the shape of the
transfer function within that section.

To nullify the effect of dynamics outside the frequency range of the section;~TRANSF
includes a second order bias polynomial. The new fitting model then is
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Figure 11. TRANSF fit with bias polynomial.

Since TRANSF fits a summation of pole pairs only, splitting the data between resonance
peaks and fitting a few at a time will not affect the final transfer function fit. The data
record can be split into sections between peaks, and the final fit can be modelled as a
summation of the parameters estimated for each section. This will be a partial fraction
expansion of the entire transfer function, so the poles and zeros can be calculated from
the recombined transfer function. Still, this method is limited to systems characterized by
complex pairs of poles and zeros only.
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Noise

The codes using non-linear minimization techniques, TRANSF and NAVFIT both do a
least-squares fit to the data. If the noise in the data has a bias, or distorts the shape of the
frequency response, then the best least-squares fit is not necessarily the correct fit. When
the noise has zero mean or if there is very little noise, the accuracy of the fit can be very
high, as is seen in the final fit of the notch filter data (figure 9), dacnbed in the previous
section on NAVFIT.

The effects of noise on the linear least-squa.res method are somewhat mare complicated.
Because the X matrix is often ill-conditioned the error in the data due to noise causes
a much greater error in the coefficients estimated. The matrix easily becomes so ill-
conditioned that the coefficients calulated are not accurate.

Also, the linear least-squares method tends to identify the high frequency poles and zeros
first. Since the noise is seen as high freqgency resonances, it will identify the noise before
identifying the actual lower frequency resonances. One method often used in practice to
overcome this problem in time-domain algorithms, is to over-model the transfer function.
For instance, if the system transfer function order is known to be 4, then instruct the
program to model it with an order of 10. The extra poles identified will fit the noise. The
actual poles and zeros then will have to be picked out by the user. This method has not
been tried with TF, but may be worthy of furthur study. An algorithm called REDUCE
was developed by D. Goodman at LLNL to pick out the poles that contributed most to the
minimization of the error in the least-squares solution of a time-domain identification tech-
nique. This is described in the NLS User’s Manual [13]. There is also a good description
of the over-modelling approach used for a time-domain Prony’s identification algorithm in
the LLNL report by W Smith and D. Lager {17]. One of these methods may be useful

with TF.
Model Order Determination

On input, all three methods require a model order specification. The best estimation of
the model order can be found using a combination of an analysis of the physical system
that produced the frequency response data, and judging visually from the Bode plots
themselves. The form of the transfer functions of the separate amplifiers, motors, etc. that
make up the system can be combined to find the order of the overall transfer function.
Also, engineers have been using Bode plots for years to estimate the location of poles and
zeros of transfer functions. A resonant peak in the transfer function plot represents a
complex pole pair, so a good first guess at model order can be made by counting the peaks
and valleys as complex pairs of poles and zeros, the sum of which will give the transfer
function denominator and numerator order.

As a last method to estimate if the order is unknown, one can obtain several fits of the
data varying the model order. Generally, as the model order increases, the error in the
fit decreases, until it levels off at somme minimum where a further increase in model order
does not decrease the error significantly. The best model order estimate is considered the
lowest order that produces an error near that minimum value. This approach may be most
useful for the linear least-squares solution, where the best order to fit both the data and

the noise is not known.

26



6.0 CONCLUSIONS AND RECOMMENDATIONS

Since the late 1960’s the dominant method used in system identification have been time
domain techniques. Though most identification problems can be solved using a time do-
main algorithm, there are applications where a frequency domain identification technique
is the most appropriate. When frequency response methods are used in control systems
design, or when the engineer simply wishes to gain general insight into the system, a
frequency domain identifier may give the engineer a more intuitive understanding of the
system response. ’

There are several important considerations involved in choosing an identification algorithm,
including how much is known about the system that produced the response data. If very
little is known about the system, and only a guess can be made about the model order,
then a linear least-squares method, such as TF should be used. If on the other hand, the
order of the system is known and fairly good starting guesses of the poles and zeros can
be made, then the iterative methods such as TRANSF and NAVFIT give the best results.

Another consideration is the model of the system, and its intended use. In structural
applications the resonant frequencies and damping ratios are the main concern, so the
model used in TRANSF, a summation of complex poles, is best. Other applications, such
as control system design, requires identification of the zeros of the system as well as the
poles. An identification code that identifies the zeros directly, such as NAVFIT, would be
the best choice in this case. In addition, some systems may have simple poles (as opposed

to complex pairs, seen in structural systems) or poles or zeros at the origin. The more
general identifier NAVFIT is once again the most appropriate choice for these applications.

There are some questions that have not been addressed in this report, and still require
further study. Those include:

What is the best method of distinquishing true poles and zeros from “noise” poles and
zeros in an over-modelled response?

How is the model order best determined?

e Can repeated poles and zeros be identified?

How do the results of these frequency domain algorithms compare t6 time domain
algorithms? .
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APPENDIX

TF SOLUTION METHOD

TF solves a set of linear equations for the coefficients by using a batch linear least squares
solution. The linear equations are derived as follows.
We are given as input data

N = the number of data points
w; .= the discrete frequencies, 1 =1,...,N
H(s;) = the transfer function data point at s;, where s; = Jw; .

The system is modeled then at w; as

b + bm 187 + ... + bo

- 7a0=1 Al
ans? + an-187 Ly +ao ’ (4.1)

H(s;) =

or

(ans? + an-18*"1 + ... +a0) H(s;) = bms]" + bm_ls:"_l +...+b ,

since ag = 1

H(s;) = —ansH(5;) — an—187 " 1H(s;) — ... — 0, 8;H(8;) + bms™ + bp—18™ 1 +...+bo .
(A.2)

We have one equation of this form for each discrete data point. We can then solve this set
of equations

H(s)= X0 |, (A.3)

where
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H(s) = [H(s1), H(s2) ..., H(sn)]"

—s"H(sy) -st"'H(s1) ... —&H(s1) stsP! L1
X = : : : ’
—sYH(sy) —s¥'H(sy) -.. —snH(sw) sMsl ... 1
and
6= [ala a2y ..., Qn, b01 bls XX 1bm]T
The solution is of the form
0= (x"x)'l xTH(s) . (A.4)
If we look at H(s) as
_ Szyls)
H(s) = 522(s) (A.5)
or
_Yl(s)
H(s) = X(s) (A.6)

where s = jw, then eq. 3 becomes

Szy(s;) = — ans? Szy(s;) — a.,,_ls?"ISzy(s,-) —...— a18;Szy(s;)

. (A7)
+ b8P STZ(8;) + bm—187 "1 SzZ(8;) + . . . + boSzz(8)
or, for the stochastic ca.se.
Y (si) = — ans?Y(s;) — an-187"1Y (85) — ... — a15Y (8) (4.8)

+ bms;"'IX(s,-) + bm_ls:-n—l X(si) +...+ boX(si)

The Szy(s) or Y(s), and the corresponding X matrix are substituted in the solution
equation (5), so that the solution is of the form
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or

6= (x'—"x) T xTy(s)

0= (XT.;()—I XTSzy(s) .

32

(A.9)

(A.10)



